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The formula proposed by Agrawal [7] for the approximation of the temperature integral in 
non-isothermal kinetics is shown to be less accurate thar~ several approximations proposed 
earlier that are of the same complexity. The domain of applicability of 10 approximate formulae 
is discussed. 

In nonisothermal kinetics of  heterogeneous processes, both chemical and 
physical ones, the rate of the process, defined as dot/dt, where ot is the transformation 
degree and t is time, is presumed to be a unique function of ~t and of the 
temperature-dependent rate constant, obeying the relation 

dot 
dt - kf(ot) (1) 

For the temperature-dependence of k, the validity of  the Arrhenius equation 

k = A e x p ( - E / R T )  (2) 

is generally presumed, where A is referred to as the frequency factor and E as the 
activation energy, though their physical significance is rather obscure [1, 2]. 

Through use of a linear temperature programme with constant heating rate, 
q = dT /d t ,  combination of Eqs (1) and (2) gives 

d~ A 
f(ot) q 

exp ( - E / R T )  d T  (3) 
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| f i t  is presumed that A, E andj'(c() do not change throughout the process, Eq. (3) 
may be integrated between the transformation degree limits 0 and ~ and the 
temperature limits T o and T, or. if the rate of the process has vanishing values at the 
initial temperature To, between the limits 0 and T: 

0 0 

The right-hand side of Eq. (4) is not integrable analytically. If the variable 
x = E /RT  is introduced the temperature integral becomes 

E x - 2 e x p ( - x )  dx ~ p ( x )  (5) o exp ( - E / R T )  d r  = ~ = 

x 

If the left-hand side integral of Eq. (4) is denoted by g(c0, we may write 

AE 
g(~) = -~qp(X) (6) 

which is the equation of TG curves proposed by Doyle [3]. 
In nonisothermal kinetics, and especially in the kinetic analysis of thermogravi- 

metric data, Eq. (6) is frequently used to test the validity of various kinetic 
equations, i.e. of  functions f(e), and to derive apparent activation energies from 
thermal analysis data. For this purpose a great variety of methods have been 
proposed, based on different approximations of the exponential integral p(x) [2, 4] 
or on the use of the numerical values of the latter, given in mathematical tables, e.g. 
[5, 61. 

The mathematically most objectionable methods approximate the function 1/T 
to make the exponential integral analytically integrable. Better results are obtained 
with approximate formulae ofp(x), obtained either by means of different expansion 
procedures, or empirically. The former always give decreasing errors with 
increasing x, while the latter may give positive errors in some x ranges and negative 
ones in other domains. Most frequently, the exponential integral is approximated 
by means of a rational expressifon, multiplied by e x: 

q(x) e- ~ (7) 
p(x )  = r ~  

where q(x) and r(x) are polynomials in x. The degree of a rational approximation 
may be defined as the degree of the highest degree polynomial between q(x) and 

r(x). 
In a recent paper, Agrawal [7] proposes an empirical-type rational approxi- 
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mation, claiming that it "'is more accurate than previously known 
approximations". 

Without pretending to give a full review of the approximations proposed, I shall 
deal with some of  them, given in Table I. 

Approximations 1-5 are those mentioned in [7], but approximations 6-10 are 
ignored by Agrawal. All these approaches are rational ones, except approximation 
7. In order to give a clear picture of the accuracy of  the approximations, the relative 
errors, A, expressed in %, are given as functions o f x  in Fig. 1, a double logarithmic 
plot being performed, as in [7]. In this plot, the horizontal straight line at A = 0 
corresponds to an error of  less than 0.01%. 

In thermal analysis problems, an approximation ofp(x)  ensuring an error of less 
than 1% may generally be considered to be sufficiently accurate. Therefore, the 
region corresponding to I A! < 1% is delimited in Fig. 1 by two horizontal dashed 

Table I Approx imat ions  proposed for the exponential  integral p ( x )  

Approximat ion  Degree p ( x )  References 

1 
1 2 e - : ' - -  [3], [7], [8], [91 

X 2 

X - - 2  
2 3 e -~ [31, [7], [8], [91, [10], 

X 3 
[111, [121 

l 
3 2 e -~' [71, [91, [121, [13], [14] 

x(x+2) [151, [16], [17] 

x - - 2  
4 3 e - : ' - -  [7], [18] 

x ( x  2 - 6) 

x - 2  
5 3 e . . . .  [71 

x(x  2 - 5) 

x + 4  
6 3 e -x [121, [13] 

x (x  2 + 6 x +  6) 

1 
7 - -  e -  ~ ~ [91 

4x x v x - ~ -  

.r 2 -  4x + 84 
8 4 e -~ [191 

(x + 2) (x 3 - 4x 2 + 84x - 16) 

x2+ lOx+ 18 
9 4 e - x  [12], [131 

x ( x  ~ + 12x z + 36x § 24) 

10 3 e -x 0.995924x§ 1.430913 [12], [20] 
x ( x  2 + 3.330657x + 1.681534) 
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Table 2 Minimum x values for which different approximations give an absolute deviation tess than the 
indicated value 

A,% 
Approximation 

10 1 0.3 

1 19.6 198 666 
2 6.92 23.5 43.7 
3 1.95 11.3 21.4 
4 4.47 9.78 14,0 
5 3.30 5.25 6.25 
6 0.48 2.62 4.37 
7 1.04 4.47 7.55 
8 0.66 1.32 1.66 
9 0.19 1.25 2.05 

10 0.03 0.36 0.54 

lines. This means that, if the d vs. x curve of the approach is situated in this region, it 
can be used in nonisothermal kinetics. The minimum x values for which the above 
condition is satisfied are indicated in Table 2. The same Table also contains the 
minimum x values for which ]d[ < 10% and I d [ < 0.3%, respectively. 

Obviously, Agrawal's approach is better than approximations 1-4 are, but 
approximations 6 and 8-10 are much better than Agrawal's. 

Approximations 1 and 2 were obtained by means of asymptotic expansion of the 
exponential integral p(x), by truncating the series after the first and the second 
terms, respectively. The asymptotic expansion 

e-~'[  2, 3, 4, + ( -  1)"(n+ 1)! + ] (8) 
p ( x ) = - ~  1 - - - + - - - - - +  ' . . .  

X X 2 X 3 " " X n 

is very good for x > 50 [22], but for small x values it may even be divergent [21 ]. If the 
first 10 terms are retained, errors will be less than 0.01% for x > 15, but for x = 10 the 
error already exceeds 0.2%. The error can be reduced by a factor of about 100 by 
adding half of the next term of the asymptotic expansion to the series [23]. 

Schl6mlich's expansion [17], 

p ( x )  - x ( x + l )  1 -  x+--2 + (x+2) (x+3)  - ( x + 2 ) ( x + 3 ) ( x + 4 )  + " "  (9) 

is much better. It is convergent and, if the first two terms are retained, 

approximation 3 is obtained. 
Inspection of Table 2 and Fig. I shows that, from the non-empirical-type rational 

approximations of the same degree, those given by Luke [13] are the best, i.e. 
approximations 3, 6 and 9. On comparing these approximations with the empirical 
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Fig. I Errors given by the approximate formulae presented in Table I for the exponential integralp(x) 

ones, viz. with 5, 8 and 10, one must take approximations of  the same degree. Both 8 
and 9 are fourth degree rational approximations and 9 is generally better than 8, 
except in a very narrow x range, 1.38 < x < 2.82, in which 8 gives lower errors 
than 9. 

Approximations 5, 6 and 10 are all o f  third degree. Obviously, 6 is much better 
than Agrawal's empirical formula for all x values. Approximation ! 0 gives excellent 
results: the lower limit o f x  for which errors do not exceed 1% is reduced by a factor 
of  more than 14 as compared to Agrawal's approach. 

Consequently, the formula proposed by Agrawal is not competitive with some 
other known formulae of  the same complexity. The problem of  the exponential 
integral p(x)  generally can be considered as being solved satisfactorily. Even if the 
approximations given in Table 1 were not accurate enough in certain special 
thermal analysis problems, it would always be possible to use the power series 
expansion: 

e-~  ~ ( -  1)'xn 
= - -  + 7 + l n x +  (10) 

p(x)  x ,.=1 n n !  

where 7 is the Euler-Mascheroni constant (0.5772156649), and truncate the series at 
the desired accuracy [6, 12]. 
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